

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

12th June 2024

Our Reference: 24182:NB1879

Winslow Constructors Pty Ltd 50 Barry Road CAMPBELLFIELD VIC 3061

Dear Sirs/Madams,

RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING WOODSONG – STAGE 3 (MICKLEHAM)

Please find attached our Report No's 24182/R001 to 24182/R008 which relate to the field density testing that was conducted within the filled allotments at the above subdivision. The level 1 inspections and associated field density testing commenced in April 2024 and was completed in May 2024.

The inspections and testing of the earthworks was undertaken in general accordance with the Level 1 requirements of AS 3798 - Guidelines on Earthworks for Commercial and Residential Developments.

The site inspection and testing was performed by experienced geotechnicians from this office. Any areas that were deemed unsatisfactory were reworked and retested under their supervision. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement. The attached compaction results, which were located randomly throughout the fill profile, are considered to be representative of the bulk fill materials that were placed across the reported allotments by Winslow Constructors during the aforementioned period. The approximate locations of the field density tests can be seen on the attached plan (Figure 1).

We are of the view that the bulk fill materials that have been placed across the reported allotments by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).

Please contact the undersigned if you require any additional information.

Civil Geotechnical Services

Nick Brock

FIGURE 1

VIL GEOTECI 8 Rose Avenue Client Project	HNICAL SERVICES , Croydon 3136 WINSLOW CONSTRUCT WOODSONG - STAGE 3	PTY LTD (C/	AMPBELLFIE	Re Da Te Di	eport No ete Issued ested by ete tested	24182/R00 12/06/24 AC 15/04/24		
Location MICKLEHAM						CI	hecked by	JHF
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time:	13:35
Test procedu	ıre AS 1289.2.1.1 & 5.8.	1						
Test No			1	2	3	4	5	6
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
Approximate c	depth below FSL							
Measurement	depth	mm	175	175	175	175	175	175
Field wet dens	sity	t∕m³	2.12	2.13	2.09	2.10	2.10	2.03
Field moisture		%	16.7	16.8	18.0	16.9	17.6	17.0
Test proceut	ITE AS 1209.0.1.1		1	2	3	4	5	6
Compactive e	ffort			۲	Star		5	0
Oversize rock	retained on sieve	mm	19.0	19.0	19.0	19.0	19,0	19.0
Percent of ove	ersize material	wet	0	0	0	0	0	0
Peak Convert	ed Wet Density	t∕m³	2.14	2.15	2.10	2.11	2.10	2.04
Adjusted Peal	k Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Mois	sture Content	%	19.0	18.5	20.0	17.0	19.5	18.0
Moistu Optimu	ure Variation From Im Moisture Content		2.5% dry	2.0% dry	2.0% dry	0.0%	2.0% dry	0.0%
density	and moisture ratio results r	elate c	only to the so	il to the depti	n of test and	not to the tu	Il depth of the	e layer
) (R _{HD})	%	99.0	99.0	99.5	99.5	99.5	99.0

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

VIL GEOTEC 8 Rose Avenue Client Project Location	HNICAL SERVICES <u>e, Croydon 3136</u> WINSLOW CONSTRUC [®] WOODSONG - STAGE 3 MICKLEHAM	PTY LTD (CA	AMPBELLFIE	R D Ta D C	eport No ate Issued ested by ate tested hecked by	24182/R00 12/06/24 AC 16/04/24 JHF		
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time:	14:28
Test procedu	ure AS 1289.2.1.1 & 5.8.	1						
Test No			7	8	9	10	11	12
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
Approximate (depth below FSL							
Measurement	t depth	mm	175	175	175	175	175	175
Field wet den	sity	t∕m³	2.11	2.10	2.09	2.07	2.02	1.99
Field moisture content %		16.7	16.9	17.9	16.6	17.8	17.9	
Test procedu	ure AS 1289.5.7.1							
Test No			7	8	9	10	11	12
Compactive e	effort			40.0	Stan	dard		10.0
Oversize rock	retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of ove	ersize material	wet	0	0	0	0	0	0
Peak Convert	red wet Density	t/m ³	2.15	2.12	2.10	2.07	2.04	2.04
Aujusted Peal	K CONVERTED WET DENSITY	t/M³ ₀∕	-	-	-	-	- 20 F	-
		70	17.0	17.0	17.0	19.0	20.3	20.3
Moist Optimu	ure Variation From um Moisture Content		0.0%	0.0%	0.5% wet	2.0% dry	2.5% dry	2.5% dry
density	and moisture ratio results	relate c	only to the so	il to the dept	h of test and	not to the fu	Il depth of the	e layer
Donaity Dati	o (R _{HD})	%	98.5	99.0	99.5	100.0	99.0	97.5

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

VIL GEOTECI 8 Rose Avenue Client Project Location	HNICAL SERVICES », Croydon 3136 WINSLOW CONSTRUC [®] WOODSONG - STAGE 3 MICKLEHAM	FORS }	PTY LTD (CA	AMPBELLFIE	Ri Da Te Da Ci	<pre>>port No ate Issued >sted by ate tested hecked by</pre>	24182/R00 12/06/24 AC 22/04/24 JHF	
Feature	EARTHWORKS		Laye	er thickness	200	mm	Time:	13:28
Test procedı	ure AS 1289.2.1.1 & 5.8.	1						
Test No			13	14	15	16	17	18
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
Approximate (depth below FSL							
Measurement	depth	mm	175	175	175	175	175	175
Field wet dens	sity	t∕m³	1.97	1.98	2.11	2.04	2.08	2.12
Field moisture	e content	%	19.2	19.9	18.7	19.8	20.4	20.5
Test procedu	ure AS 1289.5.7.1							
Test No			13	14	15	16	17	18
Compactive e	ffort				Stan	dard		•
Oversize rock	retained on sieve	тт	19.0	19.0	19.0	19.0	19.0	19.0
Percent of ove	ersize material	wet	0	0	0	0	0	0
Peak Convert	ed Wet Density	t/m³	2.01	2.02	2.15	2.08	2.10	2.12
Adjusted Peal	k Converted Wet Density	t/m ³	-	-	-	-	-	-
Optimum Mois	sture Content	%	22.0	20.0	20.5	19.5	22.5	22.0
Moist	ure Variation From		2.5%	0.0%	2.0%	0.5%	2.0%	1.5%
Optimu	Im Moisture Content		dry		dry	wet	dry	dry
density	and moisture ratio results r	elate c	only to the so	il to the dept	h of test and	not to the fu	Il depth of the	e layer
	ο (R _{HD})	%	98.0	98.0	98.0	98.0	99.0	99.5

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

Client Project Location	WINSLOW CONSTRUC WOODSONG - STAGE 3 MICKLEHAM	PTY LTD (CA	AMPBELLFIE	Te Da Ci	Tested by AC Date tested 23/04/24 Checked by JHF			
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time:	11:33
Test procedu	ure AS 1289.2.1.1 & 5.8.	. 1						
Test No			19	20	21	22	23	24
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE
Annroximate (denth below FSL		ļļ					
Measurement	t depth	mm	175	175	175	175	175	175
Field wet den	sity	t∕m³	1.96	1.92	1.95	1.93	1.94	1.96
Field moisture	e content	%	20.4	18.4	19.0	17.5	19.5	17.9
Test proceut	Jre AS 1289.5.7.1		19	20	21	22	23	24
Compactive e	offort		15	20	Star	 dard	20	2 'T
Oversize rock	cretained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19,0
Percent of ov	ersize material	wet	0	0	0	0	0	0
Peak Convert	ted Wet Density	t/m³	2.01	1.90	1.97	1.90	1.93	2.01
Adjusted Pea	k Converted Wet Density	t/m³		-	-	-	-	
Optimum Moi	sture Content	%	22.5	20.0	19.5	19.5	22.0	18.0
Moist	ure Variation From		2.0%	2.0%	0.5%	2.0%	2.5%	0.0%
Optimi	im Moisture Content		drv	drv	drv	drv	drv	0.070
density	and moisture ratio results	relate c	only to the so	il to the dept	h of test and	not to the fu	Il depth of the	e laver
Density Ratio		%	97.5	101.0	99.5	101.5	100.5	97.5
Density Ratio	o (R _{HD})	%	97.5	101.0	99.5	101.5	100.5	97.5
<i>Material desci</i> No 19 - 2	<i>ription</i> 4 Clay Fill							

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

8 Rose Avenue, Croydon 3136ClientWINSLOW CONSTRUCProjectWOODSONG - STAGELocationMICKLEHAM	TORS 3	PTY LTD (C#	AMPBELLFIE		Date Issued Fested by Date tested Dhecked by	12/06/24 AC 24/04/24 JHF	
Feature EARTHWORKS		Lay	er thickness	200	mm	Time:	10:57
Test procedure AS 1289.2.1.1 & 5.8	. 1						1 20
lest NO		ZJ	20	21	20	23	30
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE	REFER TO I FIGURE 1	REFER TO FIGURE 1
Approximate depth below FSL						<u> </u>	
Measurement depth	тт	175	175	175	175	175	175
Field wet density	t/m³	1.94	1.92	1.91	1.94	1.95	1.97
Test procedure AS 1289.5.7.1 Test No		25	26	27	28	29	30
Compactive effort		<u> </u>		Stan	Idard		T
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	#/m3	1.06	U 1 01	1 90	1 07	1.06	2.01
Adjusted Peak Converted Wet Density	t/m ³	1.90	1.31	1.90	1.51	1.30	2.01
Optimum Moisture Content	%	20.5	20.5	20.5	18.0	21.5	21.0
Moisture Variation From		2.0%	2.0%	2.5%	0.0%	2.0%	2.0%
Optimum Moisture Content		dry	dry	dry		dry	dry
density and mainture ratio regulte	relate c	only to the so	il to the dept	n of test and	not to the f	ull depth of the	e layer
			400 F	400 E	09.5	99.5	08.0

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

1	Lay 31 REFER TO FIGURE 1	er thickness 32 REFER TO FIGURE 1	200 33 REFER TO FIGURE 1	mm 34 REFER TO FIGURE 1	Time: 35 REFER TO	11:58 36 REFER TO
1	31 REFER TO FIGURE 1	32 REFER TO FIGURE 1	33 REFER TO FIGURE 1	34 REFER TO FIGURE 1	35 REFER TO	36 REFER TO
mm	31 REFER TO FIGURE 1	32 REFER TO FIGURE 1	33 REFER TO FIGURE 1	34 REFER TO FIGURE 1	35 REFER TO	36 REFER TO
	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO	REFER TO
mm					FIGURE I	FIGURE 1
mm						
	175	175	175	175	175	175
t∕m³	1.90	1.92	1.95	1.95	1.93	1.94
%	17.6	18.4	17.2	19.8	19.2	18.0
					0.7	
	31	32	33	34	35	36
	10.0	10.0	Stan		10.0	10.0
mot	19.0	19.0	19.0	19.0	19.0	19.0
t/m3	1 01	0	1 00	2.00	1.08	1.08
t/m ³	1.31	-	1.33	2.00	1.90	1.30
<i>v</i> m ²	19.0	- 18.5	- 19.5	19.0	21.5	17.5
70	10.0	10.0	10.0	10.0	21.0	17.0
	1.00/	0.00/	2.00/	0.50/	2.00/	0.50/
	1.0 /o	0.076	2.070 drv	0.5 /o	2.070 drv	0.5 /o
olato c	ury	il to the dept	b of toot and	not to the ful	Uly I donth of the	
%	100.0	100.5	98.0	97.5	97.5	98.0
	% 	% 17.6 31	% 17.6 18.4 31 32 mm 19.0 19.0 wet 0 0 t/m³ 1.91 1.91 t/m³ - - % 19.0 18.5 1.0% 0.0% dry 0 elate only to the soil to the dept % 100.0	% 17.6 18.4 17.2 31 32 33 Stan mm 19.0 19.0 wet 0 0 0 t/m³ 1.91 1.99 1/m³ * - - - % 19.0 18.5 19.5 1.0% 0.0% 2.0% dry dry dry elate only to the soil to the depth of test and % % 100.0 100.5 98.0	% 17.6 18.4 17.2 19.8 31 32 33 34 Standard mm 19.0 19.0 19.0 19.0 wet 0 0 0 0 t/m³ 1.91 1.99 2.00 t/m³ - - - % 19.0 18.5 19.5 19.0 t/m³ - - - - % 19.0 18.5 19.5 19.0 teal 0.0% 2.0% 0.5% dry wet 0.0% 0.0% 0.5% dry 100.0 100.5 98.0 97.5	% 17.6 18.4 17.2 19.8 19.2 31 32 33 34 35 Standard mm 19.0 19.0 19.0 19.0 wet 0 0 0 0 0 t/m³ 1.91 1.99 2.00 1.98 t/m³ - - - - % 19.0 18.5 19.5 19.0 21.5 1.0% 0.0% 2.0% 0.5% 2.0% dry elate only to the soil to the depth of test and not to the full depth of the % 100.0 100.5 98.0 97.5 97.5

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

- 8 Rose Avenue,	NICAL SERVICES Croydon 3136					Ja Ri Da	ob No eport No ate Issued	24182 24182/R007 12/06/24
Client Project Location	WINSLOW CONSTRUC WOODSONG - STAGE 3 MICKLEHAM	TORS F }	PTY LTD (CA	MPBELLFIE	LD)	Te Di Ci	ested by ate tested hecked by	AC 30/04/24 JHF
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time:	10:58
Test procedur	e AS 1289.2.1.1 & 5.8.	.1						
Test No			37	38	39	40	41	42
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
Annroximate de	onth below ESI							
Measurement d	lepth	mm	175	175	175	175	175	175
Field wet densit	ίν	t/m³	1.92	1.95	1.95	1.93	1.90	1.89
Field moisture of	content	%	22.9	23.8	21.3	21.7	19.1	19.4
Test procedur	e AS 1289.5.7.1		07	20	20	40	44	40
Compactive off	ort		37	30	্যস Stan	40 dard	41	42
Oversize rock r	etained on sieve	mm	19.0	19.0	19 N	19 N	19.0	19.0
Percent of over	size material	wet	0	0	0	0	0	0
Peak Converter	l Wet Density	t/m ³	1 96	2.03	2 01	2 00	1 91	1 92
Adjusted Peak	Converted Wet Density	t/m ³	-	-	-	-	-	-
Optimum Moist	ure Content	%	25.5	25.0	23.5	21.5	21.0	21.5
Moistur Optimun	e Variation From n Moisture Content		2.5% dry	1.0% dry	2.0% dry	0.0%	2.0% dry	2.0% dry
Moistur Optimun density a	e Variation From Moisture Content nd moisture ratio results	relate o	2.5% dry only to the so	1.0% dry il to the depti	2.0% dry n of test and	0.0% not to the fu	2.0% dry Il depth of the	2.0% dry e laver

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

Proiect WOODSONG -	NSTRUCTORS	PTY LTD (C,	AMPBELLFIE	ELD)	ן F <u>נ</u> ד נ	ob No Report No Date Issued Fested by Date tested	24182 24182/R00 12/06/24 AC 01/05/24
Location MICKLEHAM					(Checked by	JHF
Feature EARTHWORKS	S	Lay	er thickness	200	mm	Time:	12:01
Test procedure AS 1289.2.1	1.1 & 5.8.1						
Test No		43	44	45	46	47	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	
Approximate depth below FSL							
Measurement depth	mm	175	175	175	175	175	-
Field wet density	t/m³	1.93	1.90	1.92	1.94	1.95	-
Field moisture content	%	26.6	23.5	23.9	21.5	21.4	-
Test procedure AS 1289.5.7	7.1						
Test No		43	44	45	46	47	- 1
Compactive effort				Star	Idard		.1
Oversize rock retained on siev	em	19.0	19.0	19.0	19.0	19.0	
Percent of oversize material	wet	0	0	0	0	0	-
Peak Converted Wet Density	t/m³	1.97	1.89	1.94	2.01	2.01	-
Adjusted Peak Converted Wet	Density t/m ³	-	-	-	-		-
Optimum Moisture Content	%	29.5	26.0	26.0	24.0	23.5	-
Moisture Variation Fro	m	2.5%	2.5%	2.0%	2.5%	2.0%	Γ -
Optimum Moisture Con	tent	dry	dry	dry	dry	dry	
	io results relate c	only to the so	il to the depth	h of test and	not to the f	ull depth of the	e layer
density and moisture rat		08.0	100.0	99.0	96.5	97.0	-

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry